Đạo Hàm Trị Tuyệt Đối Của X Là Gì? Công Thức Tính Và Bài Tập

Đạo hàm giá trị tuyệt đối Của x là gì? Đạo hàm chứa dấu giá trị tuyệt đối có khó không? Đây là những câu hỏi được nhiều bạn sinh viên đặt ra khi bắt đầu tìm hiểu về đạo hàm. Tuy nhiên, nếu bạn nắm vững lý thuyết cơ bản về đạo hàm cũng như các công thức tính toán và bài tập đạo hàm giá trị tuyệt đối thì dạng toán này không còn là bài toán “khó” nữa. Hãy cùng Trường TH Trảng Dài tìm hiểu kỹ hơn về nội dung này qua bài viết dưới đây.

>>> Xem thêm:

Nguyên hàm Toán 12 – Lý thuyết, Công thức và Các dạng bài tập

Bảng và công thức nguyên thủy đầy đủ và chi tiết

Các dạng bài tập và Bất đẳng thức Toán lớp 10

Đạo hàm là gì?

Đạo hàm là gì? (Nguồn: Internet)

Giới hạn của tỷ lệ giữa gia số của hàm và gia số của đối số tại xkhi số gia của đối số tiến tới 0, được gọi là đạo hàm của hàm y = f (x) tại điểm x.

Đạo hàm của hàm số y = f (x) được ký hiệu là y ‘(x.)) hoặc f ‘(x):

f'(x_0)=\lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}
\\
\text{hoặc } y'(x_0)=\lim\limits_{x\to x_0}\frac{\Delta y}{\Delta x}

Trong đó:

  • Số gia của đối số là: ∆x = x – x
  • Số gia của hàm là: y = y – y

Hoặc bạn có thể hiểu:

\begin{aligned}
&\footnotesize\text{Đạo hàm bằng }\frac{∆y}{∆x}\text{ là rất nhỏ, giá trị đạo hàm tại một điểm }x_0\text{ thể hiện:}
\\
&\footnotesize\bull\text{Chiều biến thiên của hàm số (đang giảm hay tăng, xem đạo hàm tại đây âm − hay dương +)}
\\
&\footnotesize\bull\text{Độ lớn của biến thiên này (ví dụ như đạo hàm bằng 1 → ∆y tăng bằng ∆x)}
\end{aligned}

Đạo hàm giá trị tuyệt đối của x là gì?

Ta sử dụng công thức đạo hàm theo định nghĩa để tính đạo hàm của hàm số y = | x |.

\lim\limits_{\Delta x \to 0}\frac{f(x+\Delta x)-x}{\Delta x}

Khi thay giá trị | x | Trong, đạo hàm giá trị tuyệt đối của x là:

y'=\lim\limits_{\Delta x \to 0}\frac{|x+\Delta x|-|x|}{\Delta x}\ (1)

Nhìn vào công thức đạo hàm trên, bạn sẽ thấy đạo hàm sẽ không được xác định tại vị trí ∆x = 0, vì hàm số y = | x | là một hàm không liên tục và có dạng:

y=\left[\begin{array} {c}x \ \ \ nếu \ x \geq0\\
-x \ \ \ nếu\ x <0 \end{array}\right.

Đồ thị của hàm số y = | x | Vẽ sẽ giúp họ nhìn rõ hơn.

Xem thêm bài viết hay:  Top những bộ phim ma cà rồng cực hấp dẫn cho hội ghiền phim, thích Vampire

Đồ thị đạo hàm giá trị tuyệt đối của x

Do đó, ta không thể thay trực tiếp ∆x = 0 vào (1) để tính mà cần biến đổi thành dạng khác để mẫu khác 0 khi thay ∆x = 0 vào. Bạn có thể làm như sau:

\begin{aligned}
&\footnotesize \bull\text{Đầu tiên, đưa phương trình về dạng căn của bình phương (bởi vì }|x|=\sqrt{x^2})\\
&(1) \Leftrightarrow\lim\limits_{\Delta x \to 0}\frac{\sqrt{(x+\Delta x)^2}-\sqrt{x^2}}{\Delta x}\\
&\footnotesize \bull\text{Sau đó, ta nhân tử và mẫu cho } \sqrt{(x+\Delta x)^2}+\sqrt{x^2}\text{ nhằm mục đích khử trường hợp mẫu bằng 0.}\\
&\Leftrightarrow\lim\limits_{\Delta x \to 0}\frac{(\sqrt{(x+\Delta x)^2}-\sqrt{x^2})(\sqrt{(x+\Delta x)^2}+\sqrt{x^2})}{\Delta x(\sqrt{(x+\Delta x)^2}+\sqrt{x^2})}\\
&\Leftrightarrow\lim\limits_{\Delta x \to 0}\frac{(x+\Delta x)^2+x^2(x+\Delta x)^2-x^2(x+\Delta x)^2-x^2}{\Delta x(\sqrt{(x+\Delta x)^2}+\sqrt{x^2})}\\
&\Leftrightarrow\lim\limits_{\Delta x \to 0}\frac{x^2+2x\Delta x+\Delta x^2-x^2}{{\Delta x(\sqrt{(x+\Delta x)^2}+\sqrt{x^2})}}\\
&\Leftrightarrow\lim\limits_{\Delta x \to 0}\frac{2x\Delta x+\Delta x^2}{{\Delta x(\sqrt{(x+\Delta x)^2}+\sqrt{x^2})}}\\
&\Leftrightarrow\lim\limits_{\Delta x \to 0}\frac{2x+\Delta x}{{\sqrt{(x+\Delta x)^2}+\sqrt{x^2}}} (2)\\
&\text{Vì ∆x tiến tới 0 và sau khi biến đổi, các em có thể thay ∆x = 0 vào (2), ta được:}\\
&y =\frac{2x}{\sqrt{x^2}+\sqrt{x^2}}\\
&y =\frac{2x}{2\sqrt{x^2}}\\
&y =\frac{x}{\sqrt{x^2}}\\
&y =\frac{x}{|x|}
\end{aligned}

Sự kết luận: Đạo hàm của hàm số y = | x | được:

y'=\frac{x}{|x|}

>>> Xem thêm: Cách Tính Đạo hàm mũ và Bài tập ứng dụng

Nguyên hàm của các hàm lượng giác
chương trình thử nghiệm

Công thức tính nhanh đạo hàm giá trị tuyệt đối

Để tính toán nhanh đạo hàm giá trị tuyệt đốibạn cần nhớ một số công thức tính đạo hàm nhanh, có thể kể đến như:

\begin{aligned}
&\bull \text{Hàm số phân thức bậc nhất: }f(x) = \frac{ax + b}{cx + d} ⇒ f’(x) = \frac{ad - bc}{(cx + d)^2}
\\
&\bull \text{Hàm số phân thức bậc hai: }f(x) = \frac{ax^2 + bx + c}{mx + n} ⇒ f’(x) = \frac{amx^2 + 2anx + bn - cm}{(mx + n)^2}
\\
&\bull \text{Hàm số đa thức bậc ba: }f(x) = ax^3 + bx^2 + cx + d ⇒ f’(x) = 3ax^2 + 2bx + c
\\
&\bull \text{Hàm số trùng phương: }f(x) = ax^4 + bx^2 + c ⇒ f’(x) = 4ax^3 + 2bx
\\
&\bull \text{Hàm số chứa căn bậc hai: }f(x) = \sqrt{u(x)} ⇒ f’(x) = \frac{u’(x)}{2\sqrt{u(x)}}
\\
&\bull \text{Hàm số chứa trị tuyệt đối: }f(x) = |u(x)| ⇒ f’(x) = \frac{u’(x).u(x)}{|u(x)|}
\end{aligned}

>>> Xem thêm: Công thức đạo hàm hợp chất và Bài tập ứng dụng

Bài tập đạo hàm giá trị tuyệt đối

Tập thể dục: Tính đạo hàm của các hàm số sau:

\begin{aligned}
&1.\ y = f(x) = |x|
\\
&2.\ y = f(x) = |x^2 - 3x + 2|
\end{aligned}

Dung dịch:

\begin{aligned}
&1. \text{ Ta có:}\\
&y=\left[\begin{array} {c}x \ \ \ khi \ x \geq0\\
-x \ \ \ khi\ x <0 \end{array}\right.\\
&\text{Do đó:}\\
&y'=\left[\begin{array} {c}1 \ \ \ khi \ x >0\\
-1 \ \ \ khi\ x <0 \end{array}\right.\\
&\text{Xét giá trị x = 0}\\
&f'(0^+)=\lim\limits_{x \to 0^+}1=1\\
&f'(0^-)=\lim\limits_{x \to 0^-}-1=-1\\
&f'(0^+)\not=f'(0^-) \Rightarrow \text{Hàm số không có đạo hàm tại x = 0}.\\
&\text{Kết luận: }y'=\left[\begin{array} {c}1 \ \ \ khi \ x >0\\
-1 \ \ \ khi\ x <0 \end{array}\right. \text{và đạo hàm không tồn tại tại điểm x = 0}
\end{aligned}
\begin{aligned}
&\text{2. Tập xác định: }D=\R\\
&\text{Ta xét dấu }f(x)=x^2-3x+2\text{ để có kết quả sau:}\\
&y=f(x)=\left[\begin{array} {c}x^2-3x+2\ \ \ \ khi\ x\leq1\ hay\ x\geq2\\ -x^2+3x-2\ \ \ \ khi\ 1< x < 2\end{array}\right.\\
&\text{Ta tính y':}\\
&y'=\left[\begin{array} {c}2x-3\ \ \ \ khi\ x\leq1\ hay\ x\geq2\\ -2x+3\ \ \ \ khi\ 1< x < 2\end{array}\right.\\
&\text{Ta xét y' tại các điểm tiếp giáp của các khoảng:}\\
&\underline{Tại\ x=1:}\\
&f'(1^+)=\lim\limits_{x \to 1^+}{(-2x+3)}=1\\
&f'(1^-)=\lim\limits_{x \to 1^-}{(2x-3)}=-1\\
&f'(1^+)\not=f'(1^-) \Rightarrow \text{Hàm số không có đạo hàm tại x = 1}.\\
&\underline{Tại\ x=2:}\\
&f'(2^+)=\lim\limits_{x \to 2^+}{(2x-3)}=1\\
&f'(2^-)=\lim\limits_{x \to 2^-}{(-2x+3)}=-1\\
&f'(2^+)\not=f'(2^-) \Rightarrow \text{Hàm số không có đạo hàm tại x = 2}.\\
&\text{Kết luận: }y'=\left[\begin{array} {c}2x-3\ \ \ \ khi\ x\leq1\ hay\ x\geq2\\ -2x+3\ \ \ \ khi\ 1< x < 2\end{array}\right. \text{và đạo hàm không tồn tại tại điểm x = 1}\\& \text{và x = 2}
\end{aligned}

Học trực tuyến livestream Toán – Lý – Hóa – Văn – Anh – Sinh để bứt phá điểm số 2022 – 2023 tại Trường TH Trảng Dài

Giáo dục Trường TH Trảng Dài là Nền tảng học Toán – Lý – Hóa – Văn – Anh – Sinh trực tuyến uy tín và chất lượng nhất Việt Nam Dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình học bám sát khung chương trình của Bộ Giáo dục và Đào tạo, Trường TH Trảng Dài sẽ giúp các em lấy lại hành trang, bứt phá về điểm số và nâng cao thành tích của mình. nghiên cứu.

Xem thêm bài viết hay:  Tất tần tật về rượu soju Hàn quốc và 9 cách pha rượu soju ngon tuyệt

Số phức là gì? Cách tìm biểu diễn của số phức

Tại Trường TH Trảng Dài, trẻ em sẽ được giảng dạy bởi các giáo viên từ TOP 1% giáo viên giỏi toàn quốc. Các giáo viên đều có trình độ Thạc sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong sự nghiệp giáo dục. Với phương pháp giảng dạy sáng tạo, dễ tiếp cận, giáo viên sẽ giúp học sinh tiếp thu kiến ​​thức một cách nhanh chóng và dễ dàng.

Giáo dục Trường TH Trảng Dài cũng có sẵn Đội ngũ cố vấn học tập chuyên nghiệp luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học và cá nhân hóa lộ trình học tập của các em.

Với ứng dụng tích hợp nền tảng công nghệ và thông tin dữ liệu, mỗi lớp học của Trường TH Trảng Dài luôn được đảm bảo Đường truyền ổn định, hạn chế giật / lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học livestream trực tuyến mô phỏng lớp học offline, học viên có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên của Trường TH Trảng Dài, bạn cũng sẽ nhận được Cẩm nang Toán – Lý – Hóa “siêu hay” Tổng hợp tất cả các công thức và nội dung khóa học được biên soạn cẩn thận, chi tiết và kỹ lưỡng giúp học sinh học tập và ghi nhớ kiến ​​thức dễ dàng hơn.

Xem thêm bài viết hay:  Văn 12: Vợ Chồng A Phủ – Tô Hoài

Giới hạn của dãy số: Lý thuyết, công thức và lời giải bài tập SGK

Trường TH Trảng Dài cam kết tăng 8+ hoặc ít nhất 3 điểm cho học sinh. Nếu bạn không đạt số điểm như cam kết, Trường TH Trảng Dài sẽ hoàn trả 100% học phí cho bạn. Hãy nhanh tay đăng ký livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – 12 năm học 2022 – 2023 tại Trường TH Trảng Dài ngay hôm nay để được hưởng mức học phí siêu ưu đãi lên đến 39%, giảm từ 699K chỉ còn 399K.

Trên đây là nội dung các công thức và bài tập tính toán đạo hàm giá trị tuyệt đối mà bạn cần phải nắm vững. Hi vọng những chia sẻ này của Team Trường TH Trảng Dài sẽ giúp các bạn biết cách tính đạo hàm chứa giá trị tuyệt đối và giải nhanh các bài tập liên quan. Chúc các em làm bài thi đạt kết quả cao và đạt kết quả cao trong học kì sắp tới!

Nhớ để nguồn: Đạo Hàm Trị Tuyệt Đối Của X Là Gì? Công Thức Tính Và Bài Tập

Viết một bình luận